Problem 1

If $a_{n}=\frac{(-3)^{n} x^{n}}{n^{3 / 2}}$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1} x^{n+1}}{(n+1)^{3 / 2}} \cdot \frac{n^{3 / 2}}{(-3)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|-3 x\left(\frac{n}{n+1}\right)^{3 / 2}\right|=3|x| \lim _{n \rightarrow \infty}\left(\frac{1}{1+1 / n}\right)^{3 / 2} \\
& =3|x|(1)=3|x|
\end{aligned}
$$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}} x^{n}$ converges when $3|x|<1 \quad \Leftrightarrow \quad|x|<\frac{1}{3}$, so $R=\frac{1}{3}$. When $x=\frac{1}{3}$, the series
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$ converges by the Alternating Series Test. When $x=-\frac{1}{3}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is a convergent p-series $\left(p=\frac{3}{2}>1\right)$. Thus, the interval of convergence is $\left[-\frac{1}{3}, \frac{1}{3}\right]$.

Problem 2

$\sum_{n=2}^{\infty}(1+c)^{-n}$ is a geometric series with $a=(1+c)^{-2}$ and $r=(1+c)^{-1}$, so the series converges when $\left|(1+c)^{-1}\right|<1 \Leftrightarrow|1+c|>1 \Leftrightarrow 1+c>1$ or $1+c<-1 \Leftrightarrow c>0$ or $c<-2$. We calculate the sum of the series and set it equal to $2: \frac{(1+c)^{-2}}{1-(1+c)^{-1}}=2 \Leftrightarrow\left(\frac{1}{1+c}\right)^{2}=2-2\left(\frac{1}{1+c}\right) \Leftrightarrow 1=2(1+c)^{2}-2(1+c) \Leftrightarrow$ $2 c^{2}+2 c-1=0 \Leftrightarrow c=\frac{-2 \pm \sqrt{12}}{4}=\frac{ \pm \sqrt{3}-1}{2}$. However, the negative root is inadmissible because $-2<\frac{-\sqrt{3}-1}{2}<0$. So $c=\frac{\sqrt{3}-1}{2}$.

Problem 3

The auxiliary equation is $a r^{2}+b r+c=0$.

If $b^{2}-4 a c>0$, then any solution is of the form

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2}^{x}} \text { where } r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

But a, b, and c are all positive so both r_{1} and r_{2} are negative and $y(x)=0$
If $b^{2}-4 a c=0$, then any solution is of the form
$y(x)=c_{1} e^{r x}+c_{2} x e^{r x}$ where $r=-b /(2 a)<0$ since a, b are positive. Hence $y(x)=0$.
if $b^{2}-4 a c<0$
nen any sorution is of the form $y(x)=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$ where $\alpha=-b /(2 a)<0$ since a and b are positive. Thus $y(x)=0$.

Problem 4

(a) Case $1(\lambda=0): y^{\prime \prime}+\lambda y=0 \Rightarrow y^{\prime \prime}=0$ which has an auxiliary equation $r^{2}=0 \Rightarrow r=0 \Rightarrow y=c_{1}+c_{2} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} L \Rightarrow c_{1}=c_{2}=0$. Thus $y=0$. Case $2(\lambda<0): y^{\prime \prime}+\lambda y=0$ has auxiliary equation $r^{2}=-\lambda \Rightarrow r= \pm \sqrt{-\lambda}$ [distinct and real since $\left.\lambda<0\right] \Rightarrow$ $y=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$ where $y(0)=0$ and $y(L)=0$. Thus $0=y(0)=c_{1}+c_{2}$ (*) and $0=y(L)=c_{1} e^{\sqrt{-\lambda} L}+c_{2} e^{-\sqrt{-\lambda} L}(\dagger)$.
Multiplying (*) by $e^{\sqrt{-\lambda} L}$ and subtracting (\dagger) gives $c_{2}\left(e^{\sqrt{-\lambda L}}-e^{-\sqrt{-\lambda} L}\right)=0 \Rightarrow c_{2}=0$ and thus $c_{1}=0$ from (*).
Thus $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) $y^{\prime \prime}+\lambda y=0$ has an auxiliary equation $r^{2}+\lambda=0 \Rightarrow r= \pm i \sqrt{\lambda} \Rightarrow y=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} \sin \sqrt{\lambda} L$ since $c_{1}=0$. Since we cannot have a trivial solution, $c_{2} \neq 0$ and thus $\sin \sqrt{\lambda} L=0 \Rightarrow \sqrt{\lambda} L=n \pi$ where n is an integer $\Rightarrow \lambda=n^{2} \pi^{2} / L^{2}$ and $y=c_{2} \sin (n \pi x / L)$ where n is an integer.

Problem 5

$\mathcal{F}_{x}\left[\cos \left(2 \pi k_{0} x\right)\right](k)=\int_{-\infty}^{\infty} e^{-2 \pi i k x}\left(\frac{e^{2 \pi i k_{0} x}+e^{-2 \pi i k_{0} x}}{2}\right) d x$

$$
=\frac{1}{2} \int_{-\infty}^{\infty}\left[e^{-2 \pi i\left(k-k_{0}\right) x}+e^{-2 \pi i\left(k+k_{0}\right) x}\right] d x
$$

$$
=\frac{1}{2}\left[\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)\right]
$$

Problem 6

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{e^{i m x}} . \quad c_{n}=\frac{1}{2 \pi} \int_{-x}^{x} f(x) e^{-i x \pi} d x .
$$

Assuming that the solution can be represented as a Fourier series expansion

$$
y=\sum_{n=-\infty}^{\infty} y_{n} e^{i x x}, \longrightarrow y^{\prime}=\sum_{n=-\infty}^{\infty} i n y_{n} e^{i z x} .
$$

Substituting this into the differential equation, we get

$$
\begin{array}{lr}
\sum_{n=-\infty}^{\infty} i n y_{n} e^{i n x}+k \sum_{n=-\infty}^{\infty} y_{y} e^{i n x}=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} . & \text { Since this equation is valid for all } n \text {, we obtain } \\
i n y_{n}+k y_{n}=c_{n} \quad \text { or } \quad y_{n}=\frac{c_{n}}{i n+k} . & y(x)=\sum_{n=-\infty}^{\infty} \frac{c_{n}}{i n+k} e^{i n x} .
\end{array}
$$

