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By the Ratio Test. the series » — x" converges when 3 [z| < 1 <= |z| < 3.s0 R= 5. When x = 3. the series
Y. —575 converges by the Alternating Series Test. When o = —3. the series ) —— is a convergent p-series
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(;& =3= l). Thus. the interval of convergence 1s [—



Problem 2
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Y (14¢)™™ is a geometric series witha = (1 +¢)” " and r = (1 4+ ¢)” . so the series converges when
n=2

|(1—|—c}_1|<.’._1 = |l4¢>1 = l4e>lorl+e<—-1 = ¢>00rec< —2 Wecalculate the sum of the

. . (14¢)7° 1)’ 1
series and set it equal to 2: <=2 & ( ) :2—2( ) & 1=2(1+c)*-2(1+¢) =
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2 +2%—-1=0 = c== ﬁ"'m = —“‘g L However. the negative root 1s madmissible because —2 < “g < 0.
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Problem 3
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The auxiliary equation 1s ar +br+c=0 .
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If b —4ac>0 , then any solution 1s of the form
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vx)=c e +c.e  wherer = andr =
y) 1 2 1 2a 2 2a

Buta . b . and ¢ are all positive so both . and r , are negative and y(x)=0
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If b —4ac=0 . then any solution 1s of the form

\ "X rx , . ..
y(xJZf:]e e e where r=-b/(2a)<0 since a , b are positive. Hence y(x)=0 .
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it b —4ac<0 - | |

ten any solution 1s of the form y(x)=e (clcos f3x+c_sm [5x) where o« =-b/(2a)<0 since a and b are

positive. Thus y(x)=0 .




Problem 4

(a) Case I(A=10): "+ Ay =0 = 7" =0whichhasan amxiliaryequationr>* =0 = r=0 = y=c +cox
where y(0) =0and y(L) =0. Thus, 0 =y(0) = and0=y(L)=2L = c1=c2=0 Thusy =0.
Case 2 (A < 0); y"" + Ay = 0 has auxiliary equation r* = —\ = r = =/—X [distinct and real since A < 0] =

y= cre¥ ™ L cge™ V=" where y(0)=0andy(L) =0 Thus 0 = y(0) = ¢; + 2 (*)and
0=y(L) =cie¥ " L epeV=2F (1),
Multiplving (+) by eV =L and subtracting (1) gives ca (E"“":IL — e~ ,,-ﬂL) =0 = ¢ =0andthus c; =0 from (+).

Thus y = 0 for the cases A = 0 and A < 0.

(b) ¥ + Ay = 0 has an auxibiary equation r* = A =0 = r=LiyA = y=c; cosyAz+cosiny/Az where
y(0) =0and y(L) = 0. Thus, 0 = y(0) = ¢; and 0 = y(L) = ¢ sin /AL since ¢; = 0. Since we cannot have a trivial
solution. ¢ # 0 and thus sin VAL=0 = +/\L=n7wheren isaninteger = A =n’r" /L% and

y = ¢y sin(nmz /L) where n 1s an mteger.



Problem 5
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Problem 6

Assuming that the solution can be represented as a Fourier series expansion
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Substituting this into the differential equation, we get

Dinpe™ vk D ye™ =D o Since this equation is valid for all n, we obtain
H=—mn R=—m H=—m
o
c inx
imy, thy, =c, or ¥, =- -:E:' E _
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