If
$$a_n = \frac{(-3)^n x^n}{n^{3/2}}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{(n+1)^{3/2}} \cdot \frac{n^{3/2}}{(-3)^n x^n} \right| = \lim_{n \to \infty} \left| -3x \left(\frac{n}{n+1} \right)^{3/2} \right| = 3 |x| \lim_{n \to \infty} \left(\frac{1}{1+1/n} \right)^{3/2}$$

$$= 3 |x| (1) = 3 |x|$$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-3)^n}{n\sqrt{n}} x^n$ converges when $3|x| < 1 \iff |x| < \frac{1}{3}$, so $R = \frac{1}{3}$. When $x = \frac{1}{3}$, the series

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}$ converges by the Alternating Series Test. When $x = -\frac{1}{3}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ is a convergent *p*-series

 $\left(p=\frac{3}{2}>1\right)$. Thus, the interval of convergence is $\left[-\frac{1}{3},\frac{1}{3}\right]$.

 $\sum_{n=2}^{\infty} (1+c)^{-n} \text{ is a geometric series with } a = (1+c)^{-2} \text{ and } r = (1+c)^{-1}, \text{ so the series converges when}$ $|(1+c)^{-1}| < 1 \quad \Leftrightarrow \quad |1+c| > 1 \quad \Leftrightarrow \quad 1+c > 1 \text{ or } 1+c < -1 \quad \Leftrightarrow \quad c > 0 \text{ or } c < -2. \text{ We calculate the sum of the series and set it equal to } 2: \frac{(1+c)^{-2}}{1-(1+c)^{-1}} = 2 \quad \Leftrightarrow \quad \left(\frac{1}{1+c}\right)^2 = 2 - 2\left(\frac{1}{1+c}\right) \quad \Leftrightarrow \quad 1 = 2(1+c)^2 - 2(1+c) \quad \Leftrightarrow \\ 2c^2 + 2c - 1 = 0 \quad \Leftrightarrow \quad c = \frac{-2 \pm \sqrt{12}}{4} = \frac{\pm \sqrt{3} - 1}{2}. \text{ However, the negative root is inadmissible because } -2 < \frac{-\sqrt{3} - 1}{2} < 0.$ So $c = \frac{\sqrt{3} - 1}{2}.$

The auxiliary equation is $ar^2 + br + c = 0$.

If $b^2 - 4ac > 0$, then any solution is of the form $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ where $r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2c}$ and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2c}$ But a, b, and c are all positive so both r_1 and r_2 are negative and y(x)=0If $b^2 - 4ac = 0$, then any solution is of the form $y(x) = c_1 e^{rx} + c_2 x e^{rx}$ where r = -b/(2a) < 0 since a, b are positive. Hence y(x) = 0. if $b^2 - 4ac < 0$ then any solution is of the form $y(x) = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$ where $\alpha = -b/(2a) < 0$ since a and b are positive. Thus y(x)=0.

(a) Case $I (\lambda = 0)$: $y'' + \lambda y = 0 \Rightarrow y'' = 0$ which has an auxiliary equation $r^2 = 0 \Rightarrow r = 0 \Rightarrow y = c_1 + c_2 x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 L \Rightarrow c_1 = c_2 = 0$. Thus y = 0. Case $2 (\lambda < 0)$: $y'' + \lambda y = 0$ has auxiliary equation $r^2 = -\lambda \Rightarrow r = \pm \sqrt{-\lambda}$ [distinct and real since $\lambda < 0$] $\Rightarrow y = c_1 e^{\sqrt{-\lambda}x} + c_2 e^{-\sqrt{-\lambda}x}$ where y(0) = 0 and y(L) = 0. Thus $0 = y(0) = c_1 + c_2$ (*) and $0 = y(L) = c_1 e^{\sqrt{-\lambda}L} + c_2 e^{-\sqrt{-\lambda}L}$ (†). Multiplying (*) by $e^{\sqrt{-\lambda}L}$ and subtracting (†) gives $c_2 \left(e^{\sqrt{-\lambda}L} - e^{-\sqrt{-\lambda}L} \right) = 0 \Rightarrow c_2 = 0$ and thus $c_1 = 0$ from (*). Thus y = 0 for the cases $\lambda = 0$ and $\lambda < 0$.

(b) $y'' + \lambda y = 0$ has an auxiliary equation $r^2 + \lambda = 0 \implies r = \pm i \sqrt{\lambda} \implies y = c_1 \cos \sqrt{\lambda} x + c_2 \sin \sqrt{\lambda} x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 \sin \sqrt{\lambda} L$ since $c_1 = 0$. Since we cannot have a trivial solution, $c_2 \neq 0$ and thus $\sin \sqrt{\lambda} L = 0 \implies \sqrt{\lambda} L = n\pi$ where *n* is an integer $\implies \lambda = n^2 \pi^2 / L^2$ and $y = c_2 \sin(n\pi x/L)$ where *n* is an integer.

$$\mathcal{F}_{x} \left[\cos \left(2 \pi k_{0} x \right) \right] (k) = \int_{-\infty}^{\infty} e^{-2\pi i k x} \left(\frac{e^{2\pi i k_{0} x} + e^{-2\pi i k_{0} x}}{2} \right) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \left[e^{-2\pi i (k-k_0)x} + e^{-2\pi i (k+k_0)x} \right] dx$$

$$= \frac{1}{2} [\delta (k - k_0) + \delta (k + k_0)],$$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}. \qquad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

Assuming that the solution can be represented as a Fourier series expansion

$$y = \sum_{n=-\infty}^{\infty} y_n e^{inn}, \longrightarrow y' = \sum_{n=-\infty}^{\infty} iny_n e^{inn}.$$

Substituting this into the differential equation, we get

$$\sum_{n=-\infty}^{\infty} iny_n e^{inx} + k \sum_{n=-\infty}^{\infty} y_n e^{inx} = \sum_{n=-\infty}^{\infty} c_n e^{inx}.$$
 Since this equation is valid for all *n*, we obtain

$$iny_n + ky_n = c_n \quad \text{or} \quad y_n = \frac{c_n}{in+k}.$$

$$y(x) = \sum_{n=-\infty}^{\infty} \frac{c_n}{in+k} e^{inx}.$$